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Abstract 
 

Today’s large-scale scientific simulations produce 
data sets tens to hundreds of terabytes in size. The 
DataFoundry project is developing querying and 
analysis tools for these data sets. The Approximate Ad-
Hoc Query Engine for Simulation Data (AQSIM) uses 
a multi-resolution, tree-shaped data structure that 
allows users to place runtime limits on queries over 
scientific simulation data. In this AQSIM data 
hierarchy, each node in the tree contains an abstract 
model describing all of the information contained in 
the subtree below that node. AQSIM is able to create 
the data hierarchy in a single pass. However, the 
nodes in the hierarchy frequently have low node 
fanout, which leads to inefficient I/O behavior during 
query processing. Low node fanout is a common 
problem in tree-shaped indices. This paper presents a 
set of one-pass tree “pruning” algorithms that 
efficiently restructure the data hierarchy by removing 
inner nodes, thereby increasing node fanout. As our 
experimental results show, the best approach is a 
combination of two algorithms, one that focuses on 
increasing node fanout and one that attempts to reduce 
the maximum tree height. 
 
1. Introduction 
 

Scientific investigations increasingly depend upon 
simulation to supplement traditional experiments. 
Experiments can be expensive, like automotive crash 
studies, or impossible, like examining the evolution of 
stars [9] or of the universe itself [8]. The data 
generated from one large-scale scientific simulation 
run can easily reach tens to hundreds of terabytes in 
size, spread across thousands of files. As data set sizes 
grow, finding useful information becomes increasingly 
difficult. At Lawrence Livermore National Laboratory 

(LLNL), the DataFoundry project research and 
development efforts for the Approximate Ad-Hoc 
Query Engine for Simulation Data (AQSIM) [1, 2, 3, 
7] focus on querying the scientific data in these 
collections, enabling scientists to easily find subsets of 
interesting data.  

We take an approximate approach to queries across 
these data sets. Scientists can place a time constraint 
on each query, and the AQSIM tool returns the best 
approximate answer it can within the time constraint. 
To make time-constrained queries possible, AQSIM 
uses a multi-resolution, hierarchical representation of 
the data in which each node in the hierarchy stores a 
model of all the data in the subtree rooted at that node. 
Query processing traverses the hierarchy, evaluating 
the query against the data model at each node in the 
traversal to determine if the subtree below that node 
should be traversed or not. If the subtree can satisfy the 
query, AQSIM prioritizes it for traversal, in order to 
best use processing time before the query time limit is 
reached. 

Traditional indexing techniques will not work well 
with these data sets due to the high dimensionality and 
the sheer size of the data sets. The supercomputers that 
run the scientific simulations are heavily used and are 
not available to sort the data sets or build AQSIM 
hierarchies. Also, sorting the data to facilitate bulk-
loading a traditional index like an R*-tree [5] would 
require storing intermediate copies of the (sorted) data 
after sorting and before the traditional index is built. 
Our scientific simulation data sets can easily be large 
enough that there will not be enough disk space to 
store multiple copies of the data. In addition, sorting 
large data sets requires multiple passes over the data. 
Our aim is to create the AQSIM data hierarchy in one 
pass. 

AQSIM builds the current multi-resolution 
hierarchy [4] based solely on spatial characteristics of 



the data and produces a hierarchy that is a tree with a 
relatively small fanout and large depth – far from ideal 

for a disk-based data structure. In Section 3 we cover 
the current hierarchy in greater detail. 

In this paper we discuss several algorithms for 
restructuring, or “pruning”, a data hierarchy by 
deleting carefully selected inner nodes from the 
hierarchy to create a shorter, higher fanout data 
structure.  

In Section 4, we present several algorithms for 
selecting good inner nodes for deletion, and priority 
orderings to use, where necessary, in selecting new 
parent nodes to “adopt” the orphaned child nodes. 
While we only demonstrate these algorithms on our 
hierarchy, the algorithms can be applied to a variety of 
hierarchical data structures [11, 13]. 

As shown by our experimental results, presented in 
Sections 5 and 6, we have found that the best way to 
restructure the data hierarchy is to take one pass over 
the tree, eliminating nodes and distributing their 
children to siblings of the eliminated nodes (updating 
each sibling’s data model in the process). This 
increases average node fanout. Then follow the first 
pass with a second pass, eliminating nodes and moving 
their children up, to reduce the tree height. The 
pruning algorithms used in each pass may both be 
applied to each piece of the hierarchy while the piece 
resides in memory, making the pruning process 
effectively one pass from the perspective of the disk-
based data structure. 
 

2. Scientific simulation data  
 

Large-scale scientific simulation programs typically 
produce spatio-temporal data sets in one of several 
mesh data formats, like SILO [18] or HDF [16]. A 
mesh consists of an interconnected grid of small 
regions, or zones. Each zone in a mesh represents a 
unique spatial region and contains data (i.e. variables) 
representing the state of the simulated scientific 
phenomenon in that region at a specific time. 

 

Meshes may be regular, consisting of a single type 
of zone (such as rectangular boxes), or irregular, 
consisting of arbitrarily shaped zones, depending on 
the needs of the scientists. For pragmatic reasons, a 
single mesh may be broken up and spread across 
hundreds of files, or domains. The scientific simulation 
generating the data defines the domains, which are 
usually spatially noncontiguous. For our purposes, it is 
sufficient to think of a domain simply as the chunk of 
simulation data associated with, for example, a 
supercomputer node that handled calculations 
simulating the scientific phenomenon in that domain. 
(This is a simplification. Further information on mesh 
research and software is available at [14].) Figure 1 
shows a mesh for an astrophysics simulation of a star. 

Figure 1: Astrophysics mesh 

Simulations follow a scientific phenomenon over a 
span of simulated time, writing out the complete state 
of the phenomenon at each timestep. A timestep may 
represent a microsecond of activity in a simulation of 
the mixing of two fluids, or a million years in the 
evolution of the universe. The mesh itself may also 
evolve – the spatial regions zones represent may 
change – over the course of the simulation, in order to 
maintain the finest mesh granularity at the currently 
most active areas of the simulated phenomenon. 
Therefore, each timestep the simulation writes out 
contains a reference to the associated mesh and also 
the appropriate variable information for each zone in 
the mesh. A typical simulation data set will contain 
data for several hundred timesteps. A more complete 
description of scientific mesh data, including a contrast 
with traditional relational data, is provided in [15].  

 
3. Approximate ad-hoc query engine for 
simulation data 

 
Before we can perform any approximate query on a 

data set, we need to preprocess the data to create an 
Ad-Hoc Query Hierarchy (AQH) for each timestep in a 
data set. AQSIM currently builds the hierarchy using a 
topological agglomeration method [4] that combines 
(agglomerates) neighboring zones into larger spatial 
regions that become the nodes in the hierarchy one 



level up from the zones, or leaf level. The topological 
agglomeration algorithm then combines neighboring 
spatial regions, building the next higher level of nodes 
in the hierarchy, and continues repeating 
agglomeration steps until it gathers neighboring 
regions into the root node of a tree. The algorithm we 
use is akin to an OctTree generation algorithm [17], 
but works from the bottom up instead of top down. 
Our algorithm has been generalized to work with both 
regular and irregular meshes. As each agglomeration 
operation is performed, AQSIM creates a statistical 
model (i.e. minimum, maximum, average, standard 
deviation) of the data within the new agglomerated 
region. We have explored several alternative models 
and agglomeration approaches, but since all resulting 
AQH hierarchies have similar properties, we do not 
present the alternative models further here. 

Because the agglomeration routine uses neighbor 
information in selecting which regions to combine, the 
fanout of the resulting hierarchy is limited to the 
maximum of the number of neighbors a zone has, 
which is only eight for a rectangular, three-
dimensional grid. After agglomeration creates an initial 
hierarchy, our pruning algorithms are applied to 
improve the hierarchy before we write the AQH 
structure to disk. Our pruning algorithms both increase 
the hierarchy fanout and reduce the overall data 
structure size by removing carefully selected internal 
nodes from the AQH hierarchy. The sequence of 
operations, from raw data to AQH hierarchy, is 
depicted in Figure 2. 

 
Figure 2: Creating an AQH 

After pruning the AQH hierarchy we perform one 
final optimization before writing the data structure to 
disk. We eliminate variables stored as part of the data 
models in child nodes when the variables can be 
perfectly regenerated using the parent node’s data 
model. For example, if all the data regions contained 
by the children of a node are at exactly the same 
temperature, only the parent node will record the 
temperature data. Due to the constraints for initializing 
simulations and the physical characteristics of the 
processes being simulated, this optimization proved to 
be quite effective. For example, in the White Dwarf 
star simulation data set described in Section 5 this 
optimization reduces the AQH size approximately 
20%. 

Queries over a data set begin at the AQH root node 
for each of the timesteps in the data set. The query 
engine identifies nodes (starting with the root nodes) 
that match the query condition and inserts them into a 
priority queue. The query engine refines nodes by 
replacing nodes matching the query with the nodes’ 
children. The priorities of unrefined nodes in the 
priority queue are based on the query and the accuracy 
of the data models in the unrefined nodes. When either 
the query runtime limit expires or the all of the leaf 
nodes that match the query are identified, the query 
result is returned. AQSIM writes query results to a new 
mesh that contains only those zones that meet the 
query condition. Since each node in the AQH contains 
a model of the data in the subtree below it, that model 
may be used to generate an approximate result if there 
is insufficient time to refine an interior node. Due to 
the importance of returning conservative estimates to 
our users, while an approximate result may contain 
false positives (i.e. regions that do not match the query 
condition may be returned), the query engine is 
designed to prevent any false negatives from occurring 
(i.e. no region that meets the query condition will be 
omitted).  

Table 1: Variable definitions 

Variable Meaning 
I dimension of current variable 
N total number of dimensions 
K child node 
R root node 
S sibling node 
p parent node 
fx fanout of node x 
vi

x mean value of variable i in node x 
mini

x minimum of variable i in node x 
maxi

x maximum of variable i in node x  
 



Table 1 defines some variables we use in this paper. 
 

4. Algorithms for pruning data hierarchies 
 

We explored two basic approaches to pruning nodes 
out of a hierarchy — Move Up and Move Side —
plus a third approach — Move Both, is a hybrid of 
the first two approaches. 

All of our pruning algorithms perform a post-order 
traversal [19] of the hierarchy, pruning from the 
bottom up. The pruning algorithms follow topological 
data agglomeration and statistical data model creation 
algorithms that work post-order, building the hierarchy 
and constructing the data models from the bottom up, 
domain by domain. In order to ensure that pruning 
does not require an additional pass over the data set, 
the pruning algorithms must also traverse the data 
post-order, prune bottom up and operate on only the 
information available within a given partition of the 
data set, usually a domain. However, due to the speed 
of memory access, we allow the pruning algorithms to 
make multiple passes over the data partition currently 
in memory to improve the associated tree 
characteristics. Since the data is in memory during the 
multiple passes, the extra passes do not cause extra 
disk I/Os. 

When deleting internal nodes from a hierarchy, the 
crucial questions are which nodes to delete and where 
to re-attach their child nodes. When developing the 
pruning algorithms, we focused on moving orphaned 
nodes to the parent node (Move Up) or to an 
appropriate sibling node (Move Side) because these 
approaches are local operations – no global knowledge 
regarding the tree structure or data set is necessary. 

Gathering global knowledge would require at least 
one more full pass over the entire data set. For 
example, working explicitly to balance the height of 
the AQH would require knowledge of the total number 
of nodes and the height of the tree before node deletion 
and movement decisions could be made. Our pruning 
algorithms require no such apriori knowledge. 

We specify the desired maximum and minimum 
fanouts for AQH nodes as input to the pruning process. 
At present, we are most interested in how well the 
algorithms achieve the specified fanout. 

The pruning algorithms pass over the section of the 
AQH currently in memory multiple times if the initial 
pass does not increase the minimum node fanout to the 
requested value. The pruning algorithms move on to 
the next section of the AQH when the requested 
minimum node fanout has been achieved or when no 
pruning can be performed without overrunning the 
requested maximum node fanout. 

Unlike our plant pruning analogy, we do not ever 
eliminate leaf nodes from the data structure. The leaf 
nodes store the finest granularity data from the original 
scientific simulation mesh. Future versions of the AQH 
may eliminate leaf nodes, vastly decreasing the size of 
the AQH storage files. However, for now, we store the 
leaf nodes so that the scientists can get the same results 
from queries over the AQH and fully scanning the 
original data. 

The pruning algorithms we present in this paper are 
not restricted to any one data modeling algorithm or to 
the AQH alone. The pruning algorithms can be applied 
to any hierarchy where the data in each node in the 
hierarchy summarizes the data in all the nodes below 
that node, and there are no explicit restrictions on the 
heights of subtrees. For example, the pruning 
algorithms can work on a QuadTree [17], but not a 
height-balanced R*-tree [5]. 
 
4.1 Moving nodes up 
 

The Move Up pruning algorithm eliminates child 
nodes and moves the grandchildren nodes up a level to 
become immediate children of the former grandparent, 
which becomes parent. The children of eliminated 
nodes move up in the hierarchy. This operation both 
increases the fanout of the original grandparent node, 
and potentially reduces the height of the subtree below 
the original grandparent node. 

For each non-leaf node, p, encountered during a 
pass over the current section of the AQH, Move Up 
sorts p’s non-leaf children using one of the priority 
orderings listed below. Move Up then deletes the 
highest-priority child node, k, and adds k's children to 
p's set of children. Move Up continues deleting p’s 
children until it cannot find a child of p whose deletion 
will not push the fanout of p above the specified 
maximum fanout. Move Up does not eliminate any of 
p’s grandchildren that have moved up during the 
current pass. 

When only one child node, k, exists such that (  

+ −

kf
pf  1) ≤ maximum_fanout, then k is selected for 

deletion. However, if there is more than one child node 
that satisfies this fanout restriction and deleting all of 
the child nodes would increase the parent node’s 
fanout above the allowed maximum, then the child 
nodes must be prioritized for deletion. Once the child 
nodes have been prioritized, Move Up deletes the 
child nodes in priority order until no child nodes 
remain whose deletion would not overrun the specified 
maximum fanout. 



We explored several prioritization orderings for 
Move Up pruning. The descriptions below refer only 
to non-leaf child nodes whose deletion will not push 
the parent node’s fanout above the maximum fanout 
threshold. 

• Random: Order child nodes randomly. 
• Darwin: Order child nodes by their fanout. 

Eliminate the child with lowest fanout. Use 
distance of child nodes from their farthest leaf 
node descendants as a tie-breaker; when more 
than one child has the lowest fanout, eliminate 
the child with the longest path to a leaf node 
first. 

• Wavelet inspired: Order child nodes by how 
much the data variables they store vary relative 
to the parent node’s data variables. Unlike the 
first three Move Up prioritization orderings, the 
wavelet-inspired orderings take the values of the 
data stored on each node into consideration 
when prioritizing nodes for elimination. For 
these priority orderings, we include the spatial 
coordinates of the nodes as three more data 
dimensions. We use sums over the data 
dimensions rather than products because the data 
values in some dimensions are frequently 
constant over large swathes of the data set. Since 
subtracting the constant value from itself yields 
zero, multiplying instead of adding would make 
the resulting priorities always zero for many 
nodes. 

o Wavelet 1: Order child nodes by the sum 
of the differences of their mean data variable 
values from the mean data variables in the 
parent node. Normalize the differences using 
the variable ranges over the entire data set, 
which are stored in the root node, r. Eliminate 
the node with the largest difference first. Note 
that this priority ordering may not be used in 
one-pass pruning unless the scientific 
simulation data format includes summary 
information for the entire data set, which is not 
usually the case with scientific simulation mesh 
data, but may be so for other data types.  

∑
= −

−n

i
r
i

r
i

k
i

p
i vv

0 minmax
||  

 
o Wavelet 2: Order child nodes by how 

large their data ranges are, relative to p’s data 
ranges. Eliminate the child node with the widest 
relative ranges first, the “biggest” child. 

∑
= −

−n

i
p
i

p
i

k
i

k
i

0 minmax
minmax  

 
o Wavelet 3: Order child nodes by the 

differences of their mean data variable values 
from those in the parent node, normalized by 
the ranges of the data variables in p. Eliminate 
the node whose mean data variable values are 
farthest from the parent node's mean data values 
first. Like Wavelet 1, this ordering aims to 
eliminate the “most different” child. 

∑
= −

−n

i
p
i

p
i

k
i

p
i vv

0 minmax
||  

 
4.2 Moving nodes sideways 
 

Like the Move Up pruning algorithm, the Move 
Side pruning algorithm performs a post-order 
traversal of the given hierarchy. The Move Side 
pruning algorithm uses Move Up priority orderings 
for selecting the node, e, to eliminate from the set of 
children of the current node. Then Move Side uses 
one of the priority orderings listed below to select the 
node, s, a sibling of e that will “adopt” e's children. 
The children of eliminated node e move sideways to 
become children of s. The sibling nodes in the priority 
orderings below are those whose fanouts will not be 
pushed over the maximum fanout by the addition of 
eliminated node e’s child nodes. 

• Random: Pick s randomly. 
• Darwin: Give e’s children to sibling s that 

has the lowest fanout, the fewest children. 
• Euclid: Recall that every zone and node in 

the simulation mesh has spatial x, y and z 
coordinates, in addition to the data variables. 
Give e’s children to the sibling whose Euclidean 
distance from e is smallest. If global information 
on spatial dimension ranges is available for data 
sets with non-symmetric spatial dimensions, it 
may be best to normalize the spatial distances on 
each dimension. Because our test data sets were 
roughly symmetric (stellar spheres), we did not 
normalize the Euclidean distances. 



Table 2: Experiments 

 
• Wavelet A: Order sibling nodes by the 

differences of their mean data variable values 
from e's mean data variable values, normalized 
by the ranges of the data variables in the entire 
data set, which are stored in root node, r. Give 
e's children to the nearest sibling. Note that this 
priority algorithm requires global information, 
therefore it may not be suitable for one-pass 
pruning. 

∑
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• Wavelet B: Order sibling nodes by the 

differences of their mean data variable values 
from e's means, normalized by the ranges of the 
variables in their parent, p. (Wavelet B is 
similar to Wavelet A, but does not require 
global information.) 

∑
= −

−n
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i
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i

s
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||  

 
• Wavelet C: Order siblings, s, by the overlap 

of their data value ranges with e’s data value 
ranges, normalized by the range of the parent 
node p’s data value ranges. High is the lowest 
value for maxi between e and s; low is the 
highest value for mini between e and s. If low is 
greater than high, there is no overlap between 
the two nodes in data dimension i. In that case, 
we add zero to the sum, not the (negative) value 
of the fraction. 

∑
= −

−n

i
p
i

p
i

ii lowhigh
0 minmax

 

 

4.3 Moving nodes both ways 
 

We also ran experiments that combined the best of 
our Move Up and Move Side pruning approaches. 
For the section of the hierarchy currently in memory, 
Move Both iterates over the nodes, pruning using 
Move Side. Move Both then iterates again over 
the nodes, using Move Up. Move Both moves 
children of eliminated nodes both sideways and up. 
Favorable results were not achieved in experiments 
using Move Up, followed by Move Side, so we do 
not present the results of those experiments here. 
 
5. Experimental data sets and parameters 
 

We ran our experiments over three scientific 
simulation data sets made available by LLNL 
physicists. In each experiment we built and pruned an 
AQH for each timestep in each data set. The White 
Dwarf data set contains 22 timesteps of a simulation of 
a star exploding, totaling approximately 3.2 GB, 
roughly 144 MB per timestamp. The White Dwarf data 
set had 29 data dimensions. Figure 3 shows a graph of 
one variable in the last timestep in the White Dwarf 
data set. The Shock data set is one timestep of a 
shockwave propagating through material, 
approximately 6.8 GB.  The Shock data set has 37 data 
dimensions. The third data set, Mid-Life Star, is 16 
timesteps simulating a star in the middle of its life and 
totaling about 6.5 GB of data — roughly 404 MB per 
timestamp. The Mid-Life Star data set has 27 data 
dimensions. 

In the figures in Section 6, the displayed results for 
each data set are averages over all of that data set’s 
timesteps. 

 

Pruning 
Algorithms 

Pruning Priority Algorithms Data Sets Fanout 
Ranges 

Move Side Move Up 
Node 
Elimination 
Prioritizing 
Algorithms 

Node 
Elimination 
Prioritizing 
Algorithms 

Sibling 
Prioritization 
Algorithms 

 
 
No pruning  
Move Up  
Node Elimination  
Move Side  
Node Elimination,  

 
 
White Dwarf  
Shock 

Move Both  
Node Elimination 

Random 
Darwin 
Wavelet 1 
Wavelet 2 
Wavelet 3 

Random 
Darwin 
Wavelet 2 

Random 
Darwin 
Euclid 
Wavelet A 
Wavelet B 
Wavelet C 

Mid-Life Star 

 
 

10 – 20 
20 – 40 
40 – 60 



 
Figure 3: White dwarf data set, a simulation  

of a star exploding 

 
The requested minimum and maximum fanout 

values we experimented with are low relative to the 
fanouts a B-tree (one dimension) or spatial R-tree (two 
or three dimensions) uses. However, at each node the 
AQH stores a statistical data model for the subtree 
(minimum, maximum, average and standard deviation 
for every data dimension) below that node. Therefore, 
even at our relatively low experimental fanouts, a set 
of child nodes (read and processed as a unit during 
queries) spans multiple disk pages, giving a reasonable 
balance between node size and number of disk pages 
retrieved per access to the AQH on disk. 

For each combination of data set, requested 
minimum/maximum fanout range, and Move Up node 
elimination priority algorithm listed in Table 2, we 
created an AQH and then pruned the hierarchy. For the 
Random priority orderings, we created and pruned an 
AQH multiple times with different starting seeds for 
the pseudo-random number generator and averaged the 
results. 

Each Move Side experiment was a combination 
of: 

• A data set 
• A requested minimum/maximum fanout range 
• A node elimination ordering, from the list in 

Table 2, used to select nodes, e, for elimination 
• A sibling prioritization ordering, from the list 

in Table 2, used to select the sibling of e that 
will adopt the e’s children 

 
For each possible combination of the four 

parameters listed, we created an AQH and pruned it. If 

either the node elimination or the sibling prioritization 
ordering was Random, we ran that experiment 
multiple times with varied starting seeds for the 
pseudo-random number generator and averaged the 
results. 

Finally, we combined the best Move Side and 
Move Up priority algorithms for our Move Both 
pruning experiments. 
 
6. Experimental results 
 

In this section we present the observations that led 
us to implement Move Both, our best overall 
hierarchy pruning approach, and comment on the 
structural effects that the various pruning algorithms 
and node priority orderings have on hierarchies. 

In legends for Figures 4-11, when the Move Side 
algorithm is listed in the legend, the first following 
priority ordering is the node elimination ordering, 
followed by a ‘/’ and then the sibling selection priority 
ordering. For example, “MoveSide Wavelet 2 / 
Wavelet C” in the legend means the Wavelet 2 
ordering was used to prioritize nodes for elimination, 
and the Wavelet C ordering was used to decide 
which sibling adopted an eliminated node’s children. 
When the Move Both algorithm is listed in the 
legends, the first following priority ordering is the one 
used to order nodes for elimination in both the Move 
Up and Move Side passes and the priority ordering 
listed after the ‘/’ is the sibling node prioritization 
ordering used in the Move Side pass. 

 
6.1 Pruning effects on average node fanout 

 
Figures 4, 5 and 6 show that the Move Side 

algorithm more rapidly improves average node fanout 
than the Move Up algorithm. The Move Side 
algorithm is closer to the maximum requested for 10 – 
20 (Figure 4) and 20 – 40 (Figure 5) fanouts, though 
the Move Up pruning algorithm eventually catches up 
(Figure 6).  

Move Side’s more rapid fanout improvement is 
due to how it moves nodes as it prunes. As sibling 
nodes are deleted and their children are transferred, the 
parent nodes’ fanouts decrease. This creates more 
opportunities for node deletion at the next level closer 
to the root node. Recall that the pruning algorithms use 
post-order hierarchy traversal; child nodes are pruned 
before their parents. A node whose fanout is initially 
too high to accept another block of child nodes may 
have its fanout reduced to the point where it can take 
custody of nephew nodes without overrunning the 



specified maximum fanout. However, Move Side is 
limited by the fact that on any given inner node it 
eventually reaches a point where it may have a child 
node eligible for elimination but no available sibling of 
that child to adopt the eliminated node’s children. 
Move Up does not suffer from this liability, which 
accounts for why it surpasses Move Side’s average 
fanout improvements when the requested maximum 
fanout is high enough. 

Figures 4, 5, 6 and 7 also show that the choice of 
node elimination priority ordering for Move Side 
has negligible impact upon the performance of the 
Move Side algorithm overall —Darwin, Random 
and Wavelet 2 all behaved the same. Shortly we 
will show that sibling node choice does matter.  

 
Figure 4: Effects of pruning on average node fanout for 

the White Dwarf data set and fanout range from 10 to 20. 
Only the best node elimination priority orderings have 

been displayed. 

 
Figure 5: Effects of pruning on average node fanout for 

White Dwarf data set and fanout range from 20 to 40. Only 
the best node elimination priority orderings only have 

been displayed. 

 
Figure 6: Effects of pruning on average node fanout for 

White Dwarf data set and fanout range from 40 to 60. Only 
the best node elimination priority orderings have been 

displayed. 

 
Figure 7 shows that the Wavelet C sibling node 

selection ordering improves average node fanout better 
than any of the other Move Side orderings for 
selecting a sibling node to receive orphaned child 
nodes, regardless of which node elimination ordering 
is used. The node Move Side pruning eliminates 
matters much less than where the eliminated node’s 
children are reattached. 

For figures after Figure 7 with Move Side results, 
where the node elimination ordering is not specified in 
the legend Wavelet 2 was used; the results for other 
node elimination priority orderings are entirely 
consistent. 

The topological data modeling algorithms we 
developed are very effective at building AQH nodes 
with fanouts of precisely eight. The lack of strong 
performance differences between node elimination 
priority orderings, particularly evident in Figure 7, 
may be partially attributable to the even node fanouts 
in the AQH before pruning begins. However, any 
pruning operations on a hierarchy built over an 
OctTree or similar structure will also encounter 
homogenous node fanouts. In the next subsection we 
will decide which node elimination algorithm is best 
based, not upon node fanout effects, but other 
hierarchy metrics. 



 
Figure 7: Average node fanout for Move Side pruning over 
shock data set with fanout range from 10 to 20. Wavelet C 

is the best of the sibling priority orderings. 

 
6.2 Other pruning effects 
 
By its nature, the Move Side algorithm cannot 

decrease the height of the hierarchy. The Move Side 
algorithm move nodes only sideways — never up. A 
shorter hierarchy is desirable because a shorter path 
from root to leaves means a smaller worst-case number 
of disk I/Os between root node and leaves. As Figure 8 
shows, among the Move Up node elimination priority 
orderings, Darwin and Wavelet 2 most 
consistently reduce AQH height. This is not surprising 
for Darwin, since it explicitly uses hierarchy height to 
make node elimination decisions. Wavelet 2 
eliminates the child nodes whose data ranges are 
largest, relative to the parent; that the “largest” child 
nodes are most likely to have the longest subtrees is 
intuitively logical. 

In Figure 9 we look at the sum of the normalized 
node perimeters. We use the sum of (maxi – 
mini)/(maxr – minr) for all dimensions, over all inner 
nodes i in a timestep’s AQH – the sum over the node 
perimeters, normalized using the global minimum and 
maximum for each dimension.  This is a rough 
measure of the amount of space in the data space that 
the inner nodes cover — or how “big” the inner nodes 
are. We average this perimeter metric over all the 
timesteps in the data set. We prefer that the normalized 
node perimeters be small since unnecessarily large 
inner nodes may lead to queries traversing subtrees in 
which no data relevant to the query will be found. (R*-
tree indexes [5] minimize node perimeters when 
splitting nodes for the same reason.) Figure 9 shows 
perimeter rather than volume because our data sets 
include dimensions, j, where (maxj – minj) is zero for 

many of the nodes in the AQH, so the volume for most 
of the nodes would also be zero. 

 
Figure 8: Effects of pruning on maximum hierarchy height 
for White Dwarf data set and fanout range from 40 to 60. 

As Figure 9 shows, the Move Up priority ordering 
Wavelet 2 performs best at reducing the average 
inner node perimeters. Among the Move Side 
sibling node orderings, the Wavelet A and 
Wavelet C sibling selection orderings are more 
effective than the others. Recall that Wavelet A uses 
some global information in making decisions; 
Wavelet C does not.  

Because it does well at reducing node perimeters 
and uses no global information to do so, we consider 
Wavelet C to be the best sibling node selection 
priority ordering. Wavelet 2 performs well at both 
reducing AQH height and at minimizing node 
perimeters, so Wavelet 2 is the best node 
elimination priority ordering. 

 
Figure 9: Effects of pruning on node data perimeter for 

White Dwarf data set and fanout range from 20 to 40. Move 
Side and Move Both are using the Wavelet 2 node 

elimination priority ordering. Wavelet 2, Wavelet A and 
Wavelet C orderings do best at reducing the node 

perimeters. 



 
Figure 10 shows that, even though pruning does not 

make a large difference in AQH maximum height, 
most of the nodes in the AQH decrease in height 
significantly. The leftmost peak in the graph is the 
height the leaf nodes reach if all nodes in the tree are at 
the maximum requested fanout for that experiment. 

 
Figure 10: Histogram of number of leaf nodes vs. distance 

from root node in hierarchies created using Move Up 
pruning with the Wavelet 2 node elimination priority 

ordering over the Mid-Life Star data set. Depth zero is the 
root node. Notice how Move Up pruning "pulls" the nodes 

up towards root. 

Figure 11 shows the achieved maximum fanout 
compared to the requested maximum fanout. In all but 
one test the requested minimum fanout was 20 less 
than the requested maximum. For the maximum fanout 
of 20, we requested a minimum of 10 in order to 
ensure that some pruning occurred. (Recall that, in an 
unpruned AQH, most nodes have a fanout of eight.) Of 
note in Figure 11 is the relative smoothness of the 
achieved fanouts, indicating that the pruning 
algorithms are not overly sensitive to the input 
minimum and maximum fanouts. (Figure 11 shows 
results from Move Up experiments; Move Both 
and Move Side results were very similar.) 

Figures 4, 5, 6 and 9 all include the results for 
Move Both experiments that use the Wavelet 2 
node elimination priority algorithm and the Wavelet 
C sibling selection algorithm. Note that in all cases, 
Move Both clearly outperforms both simple Move 
Up and Move Side. 

Note that one reason the average fanout achieved 
can be smoothly specified is that the pruning 
algorithms have a steady supply of low fanout nodes 
from the topological node agglomeration algorithm to 
work with. Once that supply is exhausted, the only 
nodes available to prune will already have a fanout 
near 64 (82, where 8 is the maximum fanout produced 

by the topological agglomeration algorithm). Our 
algorithms are limited in the ability to achieve precise 
maximum fanouts, at higher requested fanouts, by the 
fact we only move sets of child nodes as a unit. Simple 
alterations to the pruning algorithms would make it 
possible to achieve precisely the requested maximum 
fanout, if necessary.  

For example, pruning algorithms could consider 
grandchildren for moving up at the same time that they 
consider child nodes; or pruning could move some 
child nodes if there is space at parent/sibling receiving 
node, even if there isn’t space to move all the child 
nodes. Since achieving fanouts within a reasonable 
range is sufficient for our current needs, we did not 
implement these changes. Also, the alterations would 
slow the pruning of each node. A similar effect would 
occur again if we were to request maximum fanouts 
above 642, but query processing would frequently 
retrieve irrelevant nodes in an AQH with such large 
fanouts. 

 
Figure 11: Average node fanout for a range of requested 
maximum fanouts — Shock data set, Move Up pruning 

with Wavelet 2 priority ordering. Note the smoothness of 
the curve indicating that the pruning algorithms are not 

over-sensitive to their input parameters. 

 
7. Related work 

 
Other approaches to improving the performance of 

a tree-shaped data access method are to sort and bulk-
load data [10, 12] or to develop improved insertion 
algorithms [6]. While we do build our data structure 
ahead of its use in queries, as in bulk-loading, we do 
not require that the data be sorted. Bulk-loading 
requires that the data be sorted into leaf node sized 
chunks, then the tree built, in order to achieve good 
query performance. Sorting requires multiple passes 
over the data set, but we need to avoid multiple passes 
over our data sets. Rather than organizing the data, 



then building a hierarchy, we approach the problem 
from the other direction by building the hierarchy, then 
reorganizing it for better performance. 

Like our pruning, [21] reorganizes an existing tree 
structure, focusing on improving poorly organized 
parts of a tree-shaped data structure. However, the 
algorithms in [21] are restricted to B-trees, and they 
actually move data in poorly performing parts of the B-
tree around on disk while other operations run 
concurrently. We only move links between nodes and 
need not worry about concurrency because our data 
sets are static. 

Other multi-resolution, tree-like data access 
methods that would be compatible with our pruning 
algorithms have been proposed, such as [11, 13, 20]. 

The MRA-Tree [11] was designed specifically with 
aggregate queries — queries that ask for sum, count, 
minimum, maximum and other aggregate information 
— in mind. Their focus is on maintaining the 
aggregate statistics in a multi-resolution tree during 
insertion and deletion operations. They do not require 
a height-balanced structure.  

STING [20] is also a hierarchical, space-based data 
partitioning approach to spatial data mining. Like our 
AQH, they allow many queries to be answered using 
statistical information stored at inner nodes, in order to 
reduce or eliminate the need for all queries to proceed 
all the way to the leaf level. 

A pyramid data structure for browsing Earth 
science data is introduced in [13]. Like the AQH, their 
pyramid stores multi-resolution, statistical summaries 
of finer-grained data at each cell (node) and can return 
approximate answers to user queries. The focus of [13] 
is on populating a pyramid (hierarchy) with statistical 
summaries and processing queries. They make few 
assumptions about the structure of the pyramid, so 
their work could be compatible with our pruning 
algorithms. 
 
8. Conclusion 
 

We presented three one-pass algorithms for 
reducing the height and increasing the fanout of a 
given multi-resolution, tree-shaped hierarchy. We 
experimented with all three algorithms using the Ad-
Hoc Query Hierarchy (AQH), our data structure for 
approximate querying with query runtime limits. Our 
Move Side hierarchy pruning algorithm removes 
inner nodes and moves their children over to carefully 
chosen sibling nodes. Move Up removes inner nodes 
and moves their children up to the removed node’s 
parent. We found that our hybrid, Move Both 
algorithm, which uses Move Side and then Move 

Up, achieves the best overall effect on the hierarchy. 
Move Both performance benefits from Move 
Side’s superior effect on inner node fanout, and 
Move Up’s good effects on hierarchy height. 

Because the scientific simulation data sets that the 
Approximate Ad-Hoc Query Engine for Simulation 
Data expects to handle are so large, we worked to 
avoid multiple passes over the data while creating our 
data hierarchies. Hence, our tree-shaped hierarchy 
pruning algorithms are all one-pass, working on local 
pieces of the tree structure without needing knowledge 
of the global hierarchy characteristics. 

We found that our Move Up algorithm reduced 
hierarchy height, though the Move Side algorithm 
was better at achieving the requested node fanouts. We 
favor eliminating child nodes based on how completely 
they overlap their parent node's data range (Wavelet 
2 node priority ordering and Wavelet C sibling 
priority ordering) because prioritizing nodes thus 
delivered the best results in our experiments over 
several real data sets. These prioritization orderings 
also require no global knowledge to order nodes. 

Move Both is, however, the best pruning 
algorithm, iterating over each local piece of the 
hierarchy twice — the first time applying Move Side 
and the second time Move Up. It achieves average 
node fanouts even closer to the maximum requested 
fanout than Move Side while also reducing the 
maximum height of the AQH as well as Move Up 
pruning does. 

For future work we could investigate splitting the 
children of an eliminated node up among multiple 
sibling nodes during Move Side, when no single 
sibling has sufficient space to accept all the orphaned 
children and not overrun the desired maximum fanout. 
We plan to investigate integrating tree structures 
generated by other data modeling algorithms, which 
cluster data based upon all the non-spatial information, 
with the tree-shaped AQH, producing and pruning a 
queryable tree or directed acyclic graph. 
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